如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.
一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为. (1)求口袋中黄球的个数; (2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率; (3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.
我们可以用如下方法解不等式(x﹣1)(x+1)>0. 第一步:画出函数y=(x﹣1)(x+1)的图象; 第二步:找出图象与x轴的交点坐标,即交点坐标为(1,0),(﹣1,0); 第三步:根据图象可知,在x<﹣1或x>1时,y的值大于0.因此可得不等式(x﹣1)(x+1)>0的解集为x<﹣1或x>1. 请你仿照上述方法,求不等式x2﹣4<0的解集.
画图求方程x2=﹣x+2的解,你是如何解决的呢?我们来看一看下面两位同学不同的方法. 甲:先将方程x2=﹣x+2化为x2+x﹣2=0,再画出y=x2+x﹣2的图象,观察它与x轴的交点,得出方程的解; 乙:分别画出函数y=x2和y=﹣x+2的图象,观察它们的交点,并把交点的横坐标作为方程的解. 你对这两种解法有什么看法?请与你的同学交流.
如图是二次函数y=x2﹣2x﹣3的图象. (1)求该抛物线的顶点坐标、与x轴的交点坐标 (2)观察图象直接指出x在什么范围内时,y>0?
如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,﹣3),一次函数y2=mx+n的图象过点A、C. (1)求二次函数的解析式; (2)求二次函数的图象与x轴的另一个交点A的坐标; (3)根据图象写出y2<y1时,x的取值范围.