已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).(1)求椭圆C的方程;(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.
已知a,b,c为互不相等的非负数. 求证:a2+b2+c2>(++).
若x,y都是正实数,且x+y>2, 求证:<2与<2中至少有一个成立.
计算: (1); (2); (3)+; (4) .
函数f(x)=ax3-2bx2+cx+4d (a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值为-. (1)求a,b,c,d的值; (2)证明:当x∈[-1,1]时,图象上不存在两点使得过此两点处的切线互相垂直; (3)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤.
函数y=,写出求该函数值的算法及流程图.