如图,三角形ABC中,AC=BC=,ABED是边长为的正方形,平面ABED⊥底面ABC,且,若G、F分别是EC、BD的中点,(Ⅰ)求证:GF//底面ABC;(Ⅱ)求证:平面EBC⊥平面ACD;(Ⅲ)求几何体ADEBC的体积V。
已知定义域为R的函数是奇函数. (1)求a的值;(2)判断的单调性(不需要写出理由); (3)若对任意的,不等式恒成立,求的取值范围.
设函数 (1)若且对任意实数均有成立,求表达式; (2)在(1)的条件下,当时,是单调函数,求实数的取值范围。
已知函数在处取得极值. (Ⅰ) 求; (Ⅱ) 设函数,如果在开区间上存在极小值,求实数的取值范围.
已知函数,. (1)求的值; (2)设,,,求的值
已知奇函数的定义域为,且在上是增函数, 是否存在实数使得, 对一切都成立?若存在,求出实数的取值范围;若不存在,请说明理由.