已知圆的圆心在坐标原点O,且恰好与直线相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.
甲、乙两人在罚球线投球命中的概率分别为,且各次投球相互之间没有影响.(1)甲、乙两人在罚球线各投球一次,求这二次投球中恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少有一次命中的概率.
已知直线的参数方程为,曲线的极坐标方程为.(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;(2)若为直线上任一点,是曲线上任一点,求的最小值.
已知复数,且为纯虚数.(1)求复数;(2)若,求复数的模.
(本题满分14分) 设函数.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)若函数仅在x=0处有极值,试求a的取值范围;(Ⅲ)若对于任何上恒成立,求b的取值范围.
(本题满分14分)口袋中有个白球和3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若,求:(1)n的值;(2)X的概率分布与数学期望.