已知函数(1)求函数的极值;(2)设函数若函数在上恰有两个不同零点,求实数的取值范围.
设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q. (1)若直线m与x轴正半轴的交点为T,且·=1,求点T的坐标; (2)求直线A1P与直线A2Q的交点M的轨迹E的方程; (3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·,若λ∈[-2,-1],求|+|(T为(1)中的点)的取值范围.
已知函数f(x)=2x--aln(x+1),a∈R. (1)若a=-4,求函数f(x)的单调区间; (2)求y=f(x)的极值点(即函数取到极值时点的横坐标).
已知数列{an}为等差数列,它的前n项和为Sn,且a3=5,S6=36 . (1)求数列{an}的通项公式; (2)数列{bn}满足bn=(-3)n·an,求数列{bn}的前n项和Tn.
有一种摸奖游戏,一个不透明的袋中装有大小相同的红球5个,白球10个,摸奖者每次随机地从袋中摸出5个球查看后再全部放回,若这5个球中有3个红球则中三等奖,有4个红球则中二等奖,有5个红球则中一等奖. (1)某人摸奖一次,问他中奖的概率有多大? (2)某人摸奖一次,若已知他中奖了,问他中二等奖的概率有多大?
如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点. (1)求证:MN//平面A1B1C1; (2)求二面角B-C1M-C的平面角余弦值的大小.