在数列中,其前项和为,满足.(1)求数列的通项公式;(2)设,求数列的前项和.
设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.
设a,b,c是正实数,求证:aabbcc≥(abc).
设a1,a2,…,an为实数,证明:≤.
已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).
已知n个正整数的和是1000,求这些正整数的乘积的最大值.