已知a=(cosx+sinx,sinx),b=(cosx-sinx,2cosx),设f(x)=a·b.(1)求函数f(x)的最小正周期;(2)当x∈时,求函数f(x)的最大值和最小值.
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0; (3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。
设全集,集合,,求
已知集合表示和中所有不同值的个数. (I)已知集合; (II)若集合; (III)求的最小值.
已知函数的定义域集合是A,函数的定义域集合是B (1)求集合A、B (2)若AB=B,求实数的取值范围.
已知是直线上的三点,点在直线外,向量满足. (Ⅰ)求函数的表达式; (Ⅱ)若不等式对恒成立,求实数的取值范围