某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)). (1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);(2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.
气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
由于工作疏忽,统计表被墨水污染,和数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9. (Ⅰ) 若把频率看作概率,求,的值; (Ⅱ) 把日最高气温高于32℃称为本地区的 “高温天气”,根据已知条件完成下面列联表,并据此你是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
附:
已知各项为正数的等差数列满足,,且(). (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前n项和.
设函数. (Ⅰ)当时,解不等式; (Ⅱ)当时,不等式的解集为,求实数的取值范围.
直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),为直线与曲线的公共点. 以原点为极点,轴的正半轴为极轴建立极坐标系. (Ⅰ)求点的极坐标; (Ⅱ)将曲线上所有点的纵坐标伸长为原来的倍(横坐标不变)后得到曲线,过点作直线,若直线被曲线截得的线段长为,求直线的极坐标方程.
设函数. (Ⅰ)证明:当,; (Ⅱ)设当时,,求的取值范围.