某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)). (1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);(2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.
已知函数f (x) = x3 -(l-3)x2 -(l +3)x + l-1(l > 0)在区间[n, m]上为减函数,记m的最大值为m0,n的最小值为n0,且满足m0-n0 = 4.(1)求m0,n0的值以及函数f (x)的解析式;(2)已知等差数列{xn}的首项.又过点A(0, f (0)),B(1, f (1))的直线方程为y=g(x).试问:在数列{xn}中,哪些项满足f (xn)>g(xn)?(3)若对任意x1,x2∈[a, m0](x1≠x2),都有成立,求a的最小值.
BCD.(1)问BC边上是否存在点Q,使得PQ⊥QD,并说明理由(2)若PA=1,且BC边上有且只有一个点Q,使得PQ⊥QD,求此时二面角Q—PD—A的正切值.
. (Ⅰ)求的解析式; (Ⅱ)若数列满足:(),且, 求数列的通项; (Ⅲ)求证:
(1)求动圆圆心的轨迹C;(2)过点T(-2,0)作直线l与轨迹C交于A、B两点,求一点,使得 是以点E为直角顶点的等腰直角三角形。
(1)求角B的余弦值;(2)求的面积