已知函数.(1)判断函数的单调性并用定义证明你的结论.(2)求函数的最大值和最小值.
.(本小题满分14分) 如图,平面平面,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,,.求证: (1)平面; (2)∥平面.
(本小题满分14分) 有个首项都是1的等差数列,设第个数列的第项为,公差为,并且成等差数列. (Ⅰ)证明(,是的多项式),并求的值 (Ⅱ)当时,将数列分组如下:(每组数的个数构成等差数列). 设前组中所有数之和为,求数列的前项和. (Ⅲ)设是不超过20的正整数,当时,对于(Ⅱ)中的,求使得不等式成立的所有的值.
(本小题满分14分) 已知,为椭圆的左、右顶点,为其右焦点,是椭圆上异于,的动点,且面积的最大值为. (Ⅰ)求椭圆的方程及离心率; (Ⅱ)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以 为直径的圆与直线的位置关系,并加以证明.
(本小题满分13分) 已知函数. (Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间; (Ⅱ)若对于都有成立,试求的取值范围; (Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
(本小题满分13分) 在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率; (Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?