设V为全体平面向量构成的集合,若映射f:V→R满足:对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.现给出如下映射:①f1:V→R,f1(m)=x-y,m=(x,y)∈V;②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.分析映射①②③是否具有性质p.
定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。 (Ⅰ)证明:数列是“平方递推数列”,且数列为等比数列。 (Ⅱ)设(Ⅰ)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。 (Ⅲ)记,求数列的前项之和,并求使的的最小值。
设常数,函数. (Ⅰ)令,求的最小值,并比较的最小值与零的大小; (Ⅱ)求证:在上是增函数; (Ⅲ)求证:当时,恒有.
如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。 (Ⅰ)若∠PAB=30°,求以MN为直径的圆方程; (Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
(理)(本题8分)甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与未参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束. (1)求只进行两局比赛,甲就取得胜利的概率; (2)求只进行两局比赛,比赛就结束的概率; (3)求甲取得比赛胜利的概率. 20、(文)(本小题8分)甲、乙两人做定点投篮,投篮者若投中则继续投篮,否则由对方投篮,第一次甲投篮,已知甲、乙每次投篮命中的概率分别为、,且甲、乙投篮是否命中互不影响. (1)求第三次由乙投篮的概率; (2)求前4次投篮中各投两次的概率.
(本小题8分)如图,正三棱柱的底面边长为,侧棱,是延长线上一点,且 (1)求证:直线平面; (2)求二面角的大小.