如图所示,在四面体OABC中,OA、OB、OC两两垂直,且OB=OC=3,OA=4.给出以下命题:①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;②存在点D,使得点O在四面体DABC外接球的球面上;③存在唯一的点D使得四面体DABC是正棱锥;④存在无数个点D,使得AD与BC垂直且相等.其中正确命题的序号是 (把你认为正确命题的序号填上).
若直线, 当时.
已知二面角a--l--b为600,动点P、Q分别在a、b内,P到b的距离为,Q到a的距离为2, 则PQ两点之间距离的最小值为
一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是p,则这个三棱柱的体积为
直线L过点(1,0)且被两条平行直线L1: 3x+y-6=0和L2: 3x+y+3=0所截得线段长为,则直线L的方程为(写成直线的一般式)
已知一个平面与正方体的12条棱的夹角均为,那么为.