设函数f(x)=ax2+bx+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的零点;(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.
已知函数 (1)当时,求函数的最小值和最大值; (2)设的内角的对应边分别为,且,若向量与向量共线,求的值.
本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。 (1)求出甲、乙两人所付租车费用相同的概率; (2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望
已知向量=(cosx,sinx), ,且x∈[0,]. (1)求 (2)设函数=+,求函数的最值及相应的的值。
已知数列的前项和为,满足,且依次是等比数列的前两项。 (1)求数列及的通项公式; (2)是否存在常数且,使得数列是常数列?若存在,求出的值;若不存在,说明理由。
设不等式|2x-1|<1的解集为M. (1)求集合M; (2)若a,b∈M,试比较ab+1与a+b的大小.