设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.(1)求矩阵M的特征值及相应的特征向量.(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.
(本题18 分)已知数列:、、且(),与数列:、、、且().记.(1)若,求的值;(2)求的值,并求证当时,;(3)已知,且存在正整数,使得在,,,中有4项为100.求的值,并指出哪4项为100.
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
(1)画散点图(2)如果y对x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:,)
.已知是复数,,均为实数(为虚数单位)且复数在复平面上对应的点在第一象限,求复数及实数的取值范围.
(本小题满分14分)已知函数.(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;(Ⅱ)当时,试比较与1的大小;(Ⅲ)求证:.
(本小题满分12分)直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.