直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.(1)求椭圆的方程.(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知a,b∈(0,+∞),且a+2b=1,求的最小值.
已知函数. (1)若函数在区间[-1,1]上存在零点,求实数a的取值范围; (2)当a=0时,若对任意的,总存在,使成立,求实数m的取值范围.
某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但每提高一个档次,在相同的时间内,产量减少3件。如果在规定的时间内,最低档次的产品可生产60件。 (1)请写出相同时间内产品的总利润与档次之间的函数关系式,并写出的定义域. (2)在同样的时间内,生产哪一档次产品的总利润最大?并求出最大利润.
已知函数. (1)用函数单调性的定义证明:函数在区间上为增函数; (2)若,当时,求实数m的取值范围.
已知函数,设函数。 (1)求函数的定义域及值域; (2)判断函数的奇偶性,并说明理由。