直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.(1)求椭圆的方程.(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题共14分)正方体的棱长为,是与的交点,是上一点,且.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的余弦值;(Ⅲ)求直线与平面所成角的正弦值.
(本小题共12分)
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.
设不等式组,所表示的平面区域的整点个数为,则 .
(本小题共14分)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为.(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率;(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(Ⅱ)设直线与轴、轴分别交于点,,求证:为定值.
(本小题满分14分)对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.(Ⅰ)判断函数和是否为R上的“平底型”函数? 并说明理由;(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;(Ⅲ)若函数是区间上的“平底型”函数,求和的值..