已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.(1)求椭圆的标准方程.(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:
(Ⅰ)求z关于t的线性回归方程; (Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程; (Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少? (附:对于线性回归方程,其中)
如图,在直三棱柱中,底面是正三角形,点是中点,,. (Ⅰ)求三棱锥的体积; (Ⅱ)证明:.
已知等比数列的各项均为正数,,公比为;等差数列中,,且的前项和为,. (1)求与的通项公式; (2)设数列满足,求的前项和.
给出定义在上的三个函数;,已知在处取最值. (1)确定函数的单调性; (2)求证:当时,恒有成立; (3)把函数的图象向上平移6个单位得到函数,试确定函数的零点个数,并说明理由.
已知数列的前项和为,点在直线上,数列满足:,且,前9项和为153. (1)求数列的通项公式; (2)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值; (3)设,,问是否存在,使得是公比为5的等比数列中的两项,且.若存在,求出的值;若不存在,请说明理由.