已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.(1)求椭圆的标准方程.(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
已知不等式的解集为.(1)求;(2)解不等式.
在△ABC中,a, b, c分别为内角A, B, C的对边,且.(Ⅰ)求A的大小;(Ⅱ)求的最大值.
已知数列的前项和为,常数,且对一切正整数都成立。(Ⅰ)求数列的通项公式;(Ⅱ)设,,求证: <4
在△ABC中,a, b, c分别为内角A, B, C的对边,且满足2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小; (Ⅱ)求的最大值.
)已知数列是等差数列,其前n项和为,,(I)求数列的通项公式;(II)设p、q是正整数,且p≠q. 证明:.