过点Q(-2,)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.(1)求r的值.(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设=+,求||的最小值(O为坐标原点).
如图,在三棱柱中,侧棱底面,,,,.(1)证明:平面;(2)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和能被3整除的概率
已知向量=, =, = (1)若,求向量、的夹角(2)当时,求函数的最大值
已知函数满足,且 在上恒成立.(1)求的值;(2)若,解不等式;(3)是否存在实数,使函数在区间上有最小值?若存在,请求出实数的值;若不存在,请说明理由.
已知点、,若动点满足.(1)求动点的轨迹曲线的方程;(2)在曲线上求一点,使点到直线:的距离最小.