如图,在正△ABC中,点D,E分别在边BC,AC上,且BD=BC,CE=CA,AD,BE相交于点P,求证: (1)P,D,C,E四点共圆;(2)AP⊥CP.
已知:如图,等腰直角三角形的直角边,沿其中位线将平面折起,使平面⊥平面,得到四棱锥,设、、、的中点分别为、、、.(1)求证:、、、四点共面;(2)求证:平面平面;(3)求异面直线与所成的角.
如图,已知圆,点.(1)求圆心在直线上,经过点,且与圆相外切的圆的方程;(2)若过点的直线与圆交于两点,且圆弧恰为圆周长的,求直线的方程.
如图,长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求与平面所成的角大小.
设全集为,集合,.(1)求如图阴影部分表示的集合;(2)已知,若,求实数的取值范围.
已知直线经过直线与直线的交点,且垂直于直线.(1)求直线的方程;(2)求直线关于原点对称的直线方程.