已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.
已知 (1) 求的值. (2) 求 的值.
已知,且的最小正周期为. (1)求的单调递减区间. (2)求在区间上的取值范围.
做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第1颗骰子出现的点数,y 表示第2颗骰子出现的点数,写出:(1)求事件“出现点数相等”的概率 (2)求事件“出现点数之和大于8”的概率。
某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率; (2)不够7环的概率。
设两个非零向量不共线.(1)三点是否能构成三角形, 并说明理由.(2)试确定实数k, 使