某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元).当年产量不小于80千件时,C(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式.(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是. (1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程; (2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标; (3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
某种海洋生物身体的长度(单位:米)与生长年限t(单位:年) 满足如下的函数关系:.(设该生物出生时t=0) (1)需经过多少时间,该生物的身长超过8米; (2)设出生后第年,该生物长得最快,求的值.
已知函数. (1)若,求实数x的取值范围; (2)求的最大值.
在△ABC中,BC=a,AC=b,a、b是方程的两个根,且,求△ABC的面积及AB的长.
已知函数过点. (1)求实数; (2)将函数的图像向下平移1个单位,再向右平移个单位后得到函数图像,设函数关于轴对称的函数为,试求的解析式; (3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.