如图,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为.(1)求直线及抛物线的方程;(2)过点的任一直线(不经过点)与抛物线交于、两点,直线与直线相交于点,记直线,,的斜率分别为,, .问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由.
(本小题满分12分) 在三棱锥P-ABC中,和是边长为的等边三角形,AB=2,0,D分别是AB,PB的中点. (I )求证:OD//平面PAC; (II)求证:平面PAB丄平面ABC (III) 求三棱锥P-ABC的体积
(本小题满分12分》 有甲、乙两种味道和颜色都极为相似的名酒各3杯.从中挑出3杯称为一次试验,如果能将甲种酒全部挑出来,算作试验成功一次.某人随机地去挑,求: (I )试验一次就成功的概率是多少? (II)恰好在第三次试验成功的概率是多少? (III)连续试验3次,恰好一次试验成功的概率是多少?
(本小题满分12分) 已知函数(其中)的图象关于直线x=对称. (I)求的值; (II)求的单调减区间.
(本小题共12分) 已知抛物线C:上横坐标为4的点到焦点的距离为5. (Ⅰ)求抛物线C的方程; (Ⅱ)设直线与抛物线C交于两点,,且(,且为常数).过弦AB的中点M作平行于轴的直线交抛物线于点D,连结AD、BD得到. (1)求证:; (2)求证:的面积为定值.
(本小题满分12分) 某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。 (Ⅰ)试写出关于的函数关系式; (Ⅱ)当=640米时,需新建多少个桥墩才能使最小?