已知双曲线C:的离心率为,左顶点为(-1,0)。(1)求双曲线方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB的中点在圆上,求m的值和线段AB的长。
如图,在直三棱柱中,,.棱上有两个动点E,F,且EF =" a" (a为常数).(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
记等差数列{}的前n项和为,已知,.(Ⅰ)求数列{}的通项公式;(Ⅱ)令,求数列{}的前项和.
一种放射性元素,最初的质量为500g,按每年10﹪衰减.(Ⅰ)求t年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)
已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.
已知抛物线:,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为.(1)当时,求椭圆的标准方程;(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.