已知椭圆的中心为原点,离心率,其一个焦点在抛物线的准线上,若抛物线与直线相切.(1)求该椭圆的标准方程;(2)当点在椭圆上运动时,设动点的运动轨迹为.若点满足:,其中是上的点,直线与的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.
若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。(I)求函数的解析式;(II)求函数的单调递增区间。
21.(本小题满分14分)已知数列满足:.(Ⅰ)问数列是否为等差数列或等比数列?说明理由;(Ⅱ)求证:数列是等差数列,并求数列的通项公式;(Ⅲ)设,求数列的前项和.
20.(本小题满分14分)已知圆和椭圆的一个公共点为.为椭圆的右焦点,直线与圆相切于点.(Ⅰ)求值和椭圆的方程;(Ⅱ)圆上是否存在点,使为等腰三角形?若存在,求出点的坐标.
19.(本小题满分13分)已知函数,其中是自然对数的底数.(Ⅰ)求函数的图象在处的切线方程;(Ⅱ)求函数在区间上的最大值与最小值.
18.(本小题满分14分)一个三棱柱直观图和三视图如图所示(主视图、俯视图都是矩形,左视图是直角三角形),设、分别为和的中点.(Ⅰ)求几何体的体积;(Ⅱ)证明:平面;(Ⅲ)证明:平面平面.