某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
(满分12分) 已知函数. (1)若,求的值; (2)求的单调增区间.
(本小题满分14分) 已知等差数列{an}中,a1=-1,前12项和S12=186. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足,记数列{bn}的前n项和为Tn, 求证: (n∈N*).
(本小题满分14分) 已知函数 (Ⅰ)当求函数的最小值; (Ⅱ)若对任意,都有>0恒成立,试求实数a的取值范围.
(本小题满分14分) 如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动. (Ⅰ) 证明:BC1//平面ACD1; (Ⅱ)证明:A1D⊥D1E; (Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.
(本小题满分14分) 已知有 (1)判断的奇偶性; (2)若时,证明:在上为增函数; (3)在条件(2)下,若,解不等式: