已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.(1)求该椭圆的方程;(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
工厂生产某种产品,次品率与日产量(万件)间的关系(为常数,且),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元(1)将日盈利额(万元)表示为日产量(万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:)
中,设、、分别为角、、的对边,角的平分线交边于,.(1)求证:;(2)若,,求其三边、、的值.
已知函数,其中为使能在时取得最大值的最小正整数.(1)求的值;(2)设的三边长、、满足,且边所对的角的取值集合为,当时,求的值域.
已知命题:方程在上有解,命题:函数的值域为,若命题“或”是假命题,求实数的取值范围.
,点在线段上.(1)若,求的长;(2)若点在线段上,且,问:当 取何值时,的面积最小?并求出面积的最小值.