设函数.(1)求函数的最小正周期和单调递增区间;(2)当时,的最大值为2,求的值,并求出的对称轴方程.
某地最近十年粮食需求量逐年上升,下表是部分统计数据:
(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程 y = b x + a ;
(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。
温馨提示:答题前请仔细阅读卷首所给的计算公式及说明.
设 f ( x ) = e x 1 + a x 2 ,其中 a 为正实数 (Ⅰ)当 a = 4 3 时,求 f ( x ) 的极值点 (Ⅱ)若 f ( x ) 为 R 上的单调函数,求 a 的取值范围。
设直线 l 1 : y = k 1 x + 1 , l 2 : y = k 2 x - 1 ,其中实数 k 1 , k 2 满足 k 1 k 2 + 2 = 0 , (I)证明 l 1 与 l 2 相交; (II)证明 l 1 与 l 2 的交点在椭圆 2 x 2 + y 2 = 1 上.
在 △ A B C 中, a = 3 , b = 2 , 1 + 2 cos B + C = 0 ,求:
(1)角A的大小;
(2)边 B C 上的高.
设函数 f ( x ) 定义在 0 , + ∞ 上, f ( 1 ) = 0 ,导函数 f ` ( x ) = 1 x , g ( x ) = f ( x ) + f ` ( x ) .
(Ⅰ)求 g ( x ) 的单调区间和最小值;
(Ⅱ)讨论 g ( x ) 与 g ( 1 x ) 的大小关系;
(Ⅲ)是否存在 x 0 > 0 ,使得 g ( x ) - g ( x 0 ) < 1 x 对任意 x > 0 成立?若存在,求出 x 0 的取值范围;若不存在请说明理由。