如图,是的内接三角形,,为 中上一点,延长至点,使.(1)求证:;(2)若,求证:.
如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?
如图,一次函数y=-x+b与反比例函数的图象相交于A(-1,4)、B(4,-1)两点,直线l⊥x轴于点E(-4,0),与反比例函数和一次函数的图象分别相交于点C、D,连接AC、BC(1)、求出b和k;(2)、求证:△ACD是等腰直角三角形;(3)、在y轴上是否存在点P,使,若存在,请求出P的坐标,若不存在,请说明理由。
梧桐山是深圳最高的山峰,某校综合实践活动小组要测量“主山峰”的高度,先在梧桐山对面广场的A处测得“峰顶”N的仰角为45o,此时,他们刚好与峰底D在同一水平线上。然后沿着坡度为30o的斜坡正对着“主山峰”前行700米,到达B处,再测得“峰顶”N的仰角为60o,如图,根据以上条件求出“主山峰”的高度?(测角仪的高度忽略不计,结果精确到1米,参考数据:)。
如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上。(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长。
近年深圳进行高中招生制度改革,某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等。(1)、若学校只有一个名额,则随机选到小斌的概率是______________。(2)、若学校争取到两个名额,请有树状图或列表法求随机选到保送的学生恰好是一男一女的概率。