某超市经销一种销售成本为每件20元的商品.据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y件.(1)写出y与x的函数关系式及自变量x的取值范围;(2)该超市想通过销售这种商品一周获得利润8000元,销售单价应定为多少?
某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△ CFE中, CF=6, CE=12,∠ FCE=45°,以点 C为圆心,以任意长为半径作 AD ⏜ ,再分别以点 A和点 D为圆心,大于 1 2 AD长为半径作弧,交 EF于点 B, AB∥ CD.
(1)求证:四边形 ACDB为△ FEC的亲密菱形;
(2)求四边形 ACDB的面积.
某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
频数
频率
体育
40
0.4
科技
25
a
艺术
b
0.15
其它
20
0.2
请根据上图完成下面题目:
(1)总人数为 人, a= , b= .
(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
如图,在四边形 ABCD中,∠ B=60°,∠ D=30°, AB= BC.
(1)求∠ A+∠ C的度数;
(2)连接 BD,探究 AD, BD, CD三者之间的数量关系,并说明理由;
(3)若 AB=1,点 E在四边形 ABCD内部运动,且满足 AE 2= BE 2+ CE 2,求点 E运动路径的长度.
已知抛物线 y= x 2+ mx﹣2 m﹣4( m>0).
(1)证明:该抛物线与 x轴总有两个不同的交点;
(2)设该抛物线与 x轴的两个交点分别为 A, B(点 A在点 B的右侧),与 y轴交于点 C, A, B, C三点都在⊙ P上.
①试判断:不论 m取任何正数,⊙ P是否经过 y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;
②若点 C关于直线 x=﹣ m 2 的对称点为点 E,点 D(0,1),连接 BE, BD, DE,△ BDE的周长记为 l,⊙ P的半径记为 r,求 1 r 的值.