某超市经销一种销售成本为每件20元的商品.据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y件.(1)写出y与x的函数关系式及自变量x的取值范围;(2)该超市想通过销售这种商品一周获得利润8000元,销售单价应定为多少?
如图,⊙O是△的外接圆,, 为⊙O的直径,BD=2,连结,求BC的长.
如图,在Rt△ADC中,∠C=90°,∠ADC=60°,AC=,点B为CD延长线上一点,且BD=2AD.求AB的长.
已知二次函数(1)用配方法将化成的形式;(2)在坐标系中利用描点法画出它的图象;
(3)根据图象回答:当自变量x的取值范围满足什么 条件时,随着的增大而减小?
.如图,在⊙O中,直径CD垂直弦AB于M,DM=2cm,MC=8cm, 求AB的长.
已知:抛物线与轴的两个交点分别为A、B,点A在点B的左侧,与y轴交于点C,顶点为D,直线经过点A、C.(1)求点D的坐标和直线AC的解析式;(2)点为抛物线上的一个动点,求使得的面积与的面积相等的点的坐标.