设数列{bn}满足bn+2=-bn+1-bn(n∈N*),b2=2b1.(1)若b3=3,求b1的值;(2)求证数列{bnbn+1bn+2+n}是等差数列;(3)设数列{Tn}满足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在实数p,q,对任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,试求q-p的最小值.
已知函数;(1) 解不等式;(2) 若对任意实数,不等式恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为(为参数)。若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中为常数)(1)当时,曲线与曲线有两个交点.求的值;(2)若曲线与曲线只有一个公共点,求的取值范围.
如图,,,,四点共圆,与的延长线交于点,点在的延长线上.(1)若,,求的值;(2)若∥,求证:线段,,成等比数列.
已知函数.(1)当时,求的单调区间,如果函数仅有两个零点,求实数的取值范围;(2)当时,试比较与1的大小.
已知函数(,)的图象恒过定点,椭圆:()的左,右焦点分别为,,直线经过点且与⊙:相切.(1)求直线的方程;(2)若直线经过点并与椭圆在轴上方的交点为,且,求内切圆的方程.