如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.(1)求证://平面;(2)求与平面BDE所成角的余弦值;(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。
某企业生产一种产品时,固定成本为5 000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为(万元)(0≤≤5),其中是产品售出的数量(单位:百台) (1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大;
已知奇函数是定义在上的减函数,若,求实数的取值范围。
(本小题满分12分)设p:函数f(x)=|x-a|在区间(4,+∞)上单调递增;q:loga2<1,如果“┐p”是真命题,q也是真命题,求实数a的取值范围.
(Ⅰ)计算:lg2+-÷; (Ⅱ)已知lga+lgb=21g(a-2b),求的值.
(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%) (Ⅰ)将日利润(元)表示成日产量(件)的函数; (Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值