已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
(本小题满分12分)的三个内角所对的边分别为,向量,,且.(Ⅰ)求的大小;(Ⅱ)现在给出下列三个条件:①;②;③,试从中再选择两个条件以确定,求出所确定的的面积.(注:只需要选择一种方案答题,如果用多种方案答题,则按第一方案给分).
(本小题满分12分)已知各项均为正数的数列中,是数列的前项和,对任意,有 .函数,数列的首项. (Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式; (Ⅲ)令,,求数列的前n项和.
(本小题满分12分)已知某种稀有矿石的价值(单位:元)与其重量(单位:克)的平方成正比,且克该种矿石的价值为元。 ⑴写出(单位:元)关于(单位:克)的函数关系式; ⑵若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率; ⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)
(本小题满分12分)如图,在矩形中,,又⊥平面,.(Ⅰ)若在边上存在一点,使,求的取值范围;(Ⅱ)当边上存在唯一点,使时,求二面角的余弦值.
(本小题满分12分)已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
(Ⅰ)用x,y表示混合食物成本c元;(Ⅱ)确定x,y,z的值,使成本最低.