如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
(本小题满分12分) 已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在轴上的截距为,交椭圆于A、B两个不同点. (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与轴始终围成一个等腰三角形.
(本小题满分12分) 如图,在平面直角坐标系xOy中,平行于x轴且过点A(3,2)的入射光线 l1 被直线l:y=x反射.反射光线l2交y轴于B点,圆C过点A且与l1, l2都相切. (1)求l2所在直线的方程和圆C的方程; (2)设分别是直线l和圆C上的动点,求的最小值及此时点的坐标.
(本小题满分12分) 设圆的切线与两坐标轴交于点. (1)证明:; (2)若求△AOB的面积的最小值.
(本小题满分12分) 己知圆C: (x – 2 )2 + y 2 =" 9," 直线l:x + y = 0. (1) 求与圆C相切, 且与直线l平行的直线m的方程; (2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;
(本小题满分12分) 命题p:对任意实数都有恒成立;命题q:关于的方程有实数根.若“p或q”为真命题,“p且q”为假命题,求实数的取值范围。