已知函数f(x)=(A>0,>0,)的图象的一部分如下图所示.(1)求函数f(x)的解析式.(2)当x(-6,2)时,求函数g(x)= f(x+2)的单调递增区间.
(本小题满分12分)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. (1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,求椭圆的方程; (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。
(本小题满分12分)如图,在多面体中,平面,,且是边长为2的等边三角形,与平面所成角的正弦值为. (Ⅰ)在线段上存在一点F,使得面,试确定F的位置; (Ⅱ)求二面角的平面角的余弦值.
(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情 况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前个小组的频率之比为,其中第小组的频数为. (1)求该校报考飞行员的总人数; (2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
(本小题满分12分)在锐角中,三个内角所对的边依次为.设,,,. (Ⅰ)若,求的面积; (Ⅱ)求b+c的最大值.
.(本小题满分14分) 已知数列,,其中是方程的两个根. (1)证明:对任意正整数,都有; (2)若数列中的项都是正整数,试证明:任意相邻两项的最大公约数均为1; (3)若,证明:。