如图所示,MN表示某饮水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以点A为圆心.以500m为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400m.通过计算回答,如果不改变方向,输水路线是否会穿过该居民区?(≈1.73)
已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′. (1)在图中画出△A′B′C′; (2)写出点A′、B′的坐标; (3)连接A′A、C′C,求四边形A′ACC′的面积.
如图,在四边形ABCD中,已知BE平分∠ABC,∠AEB=∠ABE,∠D=70°. (1)说明:AD∥BC; (2)求∠C的度数.
(1)计算: (2)解方程组: (3)解不等式组:.(将不等式组解集在数轴上表示出来)
已知直线y=x+3与x轴相交于点A,与y轴相交于点B,P是直线AB上的一个动点,过P点分别作x轴、y轴的垂线PE,PF,如图所示, (1)若P为线段AB的中点,请求出OP的长度; (2)若四边形PEOF是正方形时,求出P点坐标; (3)P点在AB上运动过程中,EF是否有最小值?若有,请求出这个最小值;若没有请说明理由.
分别以△ABC的二边AC,BC为边向三角形外側作正方形ACDE和正方形BCFG,记△ABC,△DCF的面积分别为S1和S2. ①如图1,当∠ACB=90°时,求证:S1=S2; ②如图2,当∠ACB≠90°时.S1与S2是否仍然相等,请说明理由.