已知函数的图象在点(e为自然对数的底数)处取得极值-1.(1)求实数的值;(2)若不等式对任意恒成立,求的取值范围.
有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:甲:
乙:
试分析两名学生的成绩水平.
若 ,试求;
设函数(Ⅰ)求函数的极大值;(Ⅱ)若时,恒有成立(其中是函数的导函数),试确定实数的取值范围.
已知椭圆过点,且离心率为.(1)求椭圆的方程;(2)为椭圆的左右顶点,直线与轴交于点,点是椭圆上异于的动点,直线分别交直线于两点.证明:当点在椭圆上运动时,恒为定值.
如图,在三棱柱中,,顶点在底面上的射影恰为点,且.(Ⅰ)证明:平面平面; (Ⅱ)求棱与所成的角的大小;(Ⅲ)若点为的中点,并求出二面角的平面角的余弦值.