在平面直角坐标系xOy中,已知圆:和圆:(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.
已知函数, (1)求的单调区间和极值。 (2)求在上的最大值和最小值。
已知函数f(x)=alnx-x2+1. (1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值; (2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。 (1)求恰有两个岗位没有被选的概率; (2)设选择A岗位的人数为,求的分布列及数学期望。
数列,满足 (1)求,并猜想通项公式。 (2)用数学归纳法证明(1)中的猜想。
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:)