如图,边长为2的菱形中,,点分别是的中点,将分别沿折起,使两点重合于点. (1)求证:;(2)求二面角的余弦值.
设为数列的前项和,对任意的N,都有为常数,且.(1)求证:数列是等比数列;(2)设数列的公比与函数关系为,数列满足,点落在 上,,N,求数列的通项公式;(3)在满足(2)的条件下,求数列的前项和,使恒成立时,求的最小值.[
某房地产开发商投资81万元建一座写字楼,第一年需维护费用为1万元,以后每年增加2万元,若把写字楼出租,每年收入租金30万元.(1)开发商最早在第几年获取纯利润? (2)若干年后开发商为了投资其它项目,有两种处理方案:①纯利润最大时,以10万元出售该楼;②年平均利润最大时以46万元出售该楼.问哪种方案更优?并说明理由?
若不等式组 (其中)表示的平面区域的面积是9.(1)求的值;(2)求的最小值,及此时与的值.
已知、、分别是的三个内角、、所对的边(1)若面积求、的值;(2)若,试判断的形状.
等比数列中,已知.(1)求数列的通项公式及前项和.(2)记,求的前项和.