已知函数.(1)当时,求函数的单调区间;(2)若函数有两个极值点,且,求证:;(Ⅲ)设,对于任意时,总存在,使成立,求实数的取值范围.
在数列中,(). (1)求的值; (2)是否存在常数,使得数列是一个等差数列?若存在,求的值及的通项公式;若不存在,请说明理由.
如图,是圆的直径,垂直于圆所在的平面,是圆上的点. (1)求证:平面平面; (2)若,求二面角的余弦值.
已知函数对任意满足,,若当时,(且),且. (1)求实数的值; (2)求函数的值域.
已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴直线与椭圆相交于、两点. (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围.
如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,. (Ⅰ)求证:平面⊥平面; (Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.