已知函数,的最大值为2.(Ⅰ)求函数在上的值域;(Ⅱ)已知外接圆半径,,角所对的边分别是,求的值.
已知椭圆的左右顶点分别为,离心率. (1)求椭圆的方程; (2)若点为曲线:上任一点(点不同于),直线与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
如图,,为圆柱的母线,是底面圆的直径,,分别是,的中点,. (1)证明:; (2)证明:; (3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥内会有被捕的危险,求鱼被捕的概率.
已知函数(). (1)若,求函数的极值; (2)设. ① 当时,对任意,都有成立,求的最大值; ② 设的导函数.若存在,使成立,求的取值范围.
设平面向量,,函数. (1)当时,求函数的取值范围; (2)当,且时,求的值.
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点. (1)试确定点M的位置,使AC∥平面MDF,并说明理由; (2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.