解一元二次方程:
解不等式组.
先化简,再求值.
,其中,.
如图,抛物线的图象经过点,顶点的坐标为,与轴交于、两点.
(1)求抛物线的解析式.
(2)连接,为直线上一点,当时,求点的坐标和的值.
(3)点是轴上一动点,当为何值时,的值最小.并求出这个最小值.
(4)点关于轴的对称点为,当取最小值时,在抛物线的对称轴上是否存在点,使是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
如图,在中,是直径,是弦,,连接交于点,.
(1)求证:是的切线.
(2)过点作于,交于,已知,,求的长.
某县有、两个大型蔬菜基地,共有蔬菜700吨.若将基地的蔬菜全部运往甲市所需费用与基地的蔬菜全部运往甲市所需费用相同.从、两基地运往甲、乙两市的运费单价如下表:
甲市(元吨)
乙市(元吨)
基地
20
25
15
24
(1)求、两个蔬菜基地各有蔬菜多少吨?
(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从基地运送吨蔬菜到甲市,请问怎样调运可使总运费最少?