抛物线经过点A(4,0),B(2,2),连结OB,AB.(1)求、的值;(2)求证:△OAB是等腰直角三角形;(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.
如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF (1)求证:四边形AECF是平行四边形; (2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.
解方程:.
计算: (1) (2)
如图,已知BE⊥AD,CF⊥AD,且BE=CF. (1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论. (2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件.
如图,菱形ABCD中, E、F分别是CB、CD上的点,BE=DF. (1)求证:AE=AF. (2)若AE垂直平分BC,AF垂直平分CD求证: △AEF为等边三角形.