如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并在右图中画出函数的图像;(2)求△PBQ面积的最大值.
如图,在平面直角坐标系中,有抛物线.抛物线经过原点,与轴正半轴交于点,与其对称轴交于点,是抛物线上一点,且在轴上方,过点作轴的垂线交抛物线于点,过点作的垂线交抛物线于点(不与点重合),连结,设点的横坐标为.
(1)求的值;
(2)当抛物线经过原点时,设与重叠部分图形的周长为.
①求的值;
②求与之间的函数关系式;
(3)当为何值时,存在点,使以点,,,为顶点的四边形是轴对称图形?直接写出的值.
如图,在菱形中,对角线与相交于点,,,点从点出发,沿以每秒2个单位长度的速度向终点运动,当点不与点重合时,过点作于点,作交于点,过点作交(或的延长线)于点,得到矩形,设点运动的时间为秒
(1)求线段的长(用含的代数式表示);
(2)求点与点重合时的值;
(3)设矩形与菱形重叠部分图形的面积与平方单位,求与之间的函数关系式;
(4)矩形的对角线与相交于点,当时,的值为 ;当时,的值为 .
感知:如图1,平分.,,易知:.
探究:如图2,平分,,,求证:.
应用:如图3,四边形中,,,,则 (用含的代数式表示)
甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为(时,与之间的函数图象如图所示.
(1)求甲车从地到达地的行驶时间;
(2)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;
(3)求乙车到达地时甲车距地的路程.
如图,在中,点在边上,点在边的延长线上,且,与交于点.
(1)求证:;
(2)若,,求的长.