如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.(Ⅰ)求椭圆E的方程; (Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
(本小题满分14分)已知函数. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)若对任意,,且恒成立,求的取值范围.
(本小题满分13分)如图,港口在港口正东方海里处,小岛在港口北偏东方向和港口北偏西方向上,一艘科学考察船从港口O出发,沿北偏东的方向以每小时海里的速度驶离港口,一艘快艇从港口B出发,以每小时海里的速度驶向小岛,在岛装运补给物资后给考察船送去,现两船同时出发,补给物资的装船时间需要小时,问快艇驶离港口后最少要经过多少时间才能和考察船相遇?
(本小题满分13分)设函数,其中常数. (Ⅰ)求函数的单调区间及单调性; (Ⅱ)若当时恒成立,求实数的取值范围.
(本小题满分13分)在等比数列中,且,是和的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,(),求数列的前项和.
(本小题满分13分)设函数,. (Ⅰ)求的最小正周期及单调递增区间; (Ⅱ)若时,,求函数的最大值,并指出取何值时,函数取得最大值.