某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个.(1)设每个定价增加元,此时的销售量是多少?(用含的代数式表示)(2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?(3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
我校准备挑选一名跳高运动员参加区中学生运动会,对跳高队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下: 甲:170 165 168 169 172 173 168 167 乙:160 173 172 161 162 171 170 175甲、乙两名运动员的跳高平均成绩分别是多少?哪名运动员的成绩更为稳定?为什么?若预测,跳过165cm就很可能获得冠军。该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm才能得冠军呢?为什么?
如图,在长方形ABCD中,,AB=6cm,BC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在点E处,BE交AD于点F,求证:△FBD是等腰三角形;求AF长。
如图,在H是高AD、BE的交点,若BH=10,求AC的长
如图1,已知抛物线的顶点为,且经过原点,与轴的另一个交点为.求抛物线的解析式;若点在抛物线的对称轴上,点在抛物线上,且以、、、四点为顶点的四边形为平行四边形,求点的坐标;连接、,如图2,在轴下方的抛物线上是否存在点,使得与相似?若存在,求出点的坐标;若不存在,说明理由.
已知正方形纸片的边长为2.操作:如图1,将正方形纸片折叠,使顶点落在边上的点处(点与、不重合),折痕为,折叠后边落在的位置,与交于点. 探究:观察操作结果,找到一个与相似的三角形,并证明你的结论;当点位于中点时,你找到的三角形与周长的比是多少(图2为备用图)?