如图,AB是⊙O的直径,,M是弧AB的中点,OC⊥OD,△COD绕点O旋转与△AMB的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.(1)求证:;(2)连接PM、QM,试探究:在△COD绕点O旋转的过程中,∠PMQ是否为定值?若是,求出∠PMQ的大小;若不是,请说明理由;(3)连接EF,试探究:在△COD绕点O旋转的过程中,△EFM的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由
某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中, m 的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
如图,已知二次函数 y = − x 2 + bx + c 的图象交 x 轴于点 A ( − 4 , 0 ) 和点 B ,交 y 轴于点 C ( 0 , 4 ) .
(1)求这个二次函数的表达式;
(2)若点 P 在第二象限内的抛物线上,求四边形 AOCP 面积的最大值和此时点 P 的坐标;
(3)在平面直角坐标系内,是否存在点 Q ,使 A , B , C , Q 四点构成平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.
如图,在正方形 ABCD 中,点 E 为对角线 AC 上的一点,连接 BE , DE .
(1)如图1,求证: ΔBCE ≅ ΔDCE ;
(2)如图2,延长 BE 交直线 CD 于点 F , G 在直线 AB 上,且 FG = FB .
①求证: DE ⊥ FG ;
②已知正方形 ABCD 的边长为2,若点 E 在对角线 AC 上移动,当 ΔBFG 为等边三角形时,求线段 DE 的长(直接写出结果,不必写出解答过程).
有一个运输队承包了一家公司运送货物的业务,第一次运送 18 t ,派了一辆大卡车和5辆小卡车;第二次运送 38 t ,派了两辆大卡车和11辆小卡车,并且两次派的车都刚好装满.
(1)两种车型的载重量各是多少?
(2)若大卡车运送一次的费用为200元,小卡车运送一次的费用为60元,在第一次运送过程中怎样安排大小车辆,才能使费用最少?(直接写出派车方案)
我市某中学为了解学生的体质健康状况,随机抽取若干名学生进行测试,测试结果分为 A :良好、 B :合格、 C :不合格三个等级.并根据测试结果绘制成如下两幅尚不完整的统计图,请根据两幅统计图中的信息回答下列问题:
(1)此次调查共抽取了 人,扇形统计图中 C 部分圆心角的度数为 ;
(2)补全条形统计图;
(3)若该校共有1800名学生,请估计体质健康状况为“合格”的学生有多少人?