设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6, 且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望.
(本小题满分13分)已知椭圆过点,且离心率.(Ⅰ)求椭圆的方程; (Ⅱ)若椭圆上存在点关于直线对称,求的所有取值构成的集合,并证明对于,的中点恒在一条定直线上.
(本小题满分14分)如图1,在梯形中,,,,四边形是矩形.将矩形沿折起到四边形的位置,使平面平面,为的中点,如图2.(Ⅰ)求证:;(Ⅱ)求证://平面; (Ⅲ)判断直线与的位置关系,并说明理由.
(本小题满分13分)在中,.(Ⅰ)若,求的大小;(Ⅱ)若,求的面积的最大值.
(本小题满分13分)某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:
(Ⅰ)写出频率分布直方图中的的值,并作出甲种酸奶日销售量的频率分布直方图;(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.
(本小题满分13分)已知数列的前项和为, ,且是与的等差中项.(Ⅰ)求的通项公式;(Ⅱ)若数列的前项和为,且对,恒成立,求实数的最小值.