已知AB为⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD于D,连接BC,求证BC平分∠PBD.
给出下列命题: 命题1:点(1,1)是直线y=x与双曲线y=的一个交点; 命题2:点(2,4)是直线y=2x与双曲线y=的一个交点; 命题3:点(3,9)是直线y=3x与双曲线y=的一个交点; (1)请观察上面命题,猜想出命题n(n是正整数); (2)证明你猜想的命题n是正确.
如图,⊙O中,AB、CD是⊙O的直径,F是⊙O上一点,连接BC、BF,若点B是弧CF的中点. (1)求证:△ABF≌△DCB; (2)若CD⊥AF,垂足为E,AB=10,∠C=60°,求EF的长.
九年级五班某同学为了测量某市电视台的高度,进行了如下操作: (1)在点A处安置测倾器,测得塔顶C的仰角∠CAB=30°; (2)他沿着电视塔方向前进了80米到达B处,又测得塔顶C的仰角为60°; (3)量出测倾器AF的高度AF=1.5米.根据测量数据,请你计算出电视塔的高度CE约为多少米.(精确到0.1米,≈1.73)
已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=. (1)求k的值和边AC的长; (2)求点B的坐标.
先化简,再求值:,其中a=-3.