已知,求下列各式的值:(1);(2).
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月处理量最小为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工立品价值为100元.(1)该单位月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少要补贴多少元才能使该单位不亏损?
已知函数,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.
已知的角所对的边份别为,且(1)求角的大小;(2)若,求的周长的取值范围.
对于函数,解答下述问题:(1)若函数的定义域为R,求实数a的取值范围;(2)若函数的值域为,求实数a的值;
已知函数 (为实常数) .(1)当时,求函数在上的最大值及相应的值;(2)当时,讨论方程根的个数.(3)若,且对任意的,都有,求实数a的取值范围.