一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,若篮球运行的轨迹为抛物线,篮圈中心距离地面3米.(1)建立如图的平面直角坐标系,求抛物线的解析式;(2)问此球能否投中?
如图6,从点P向⊙O引两条切线PA,PB,切点为A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm,求AC的长.
如图,抛物线经过、两点,与轴交于另一点.求抛物线的解析式已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.
在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点的纵坐标,则点在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点? 试用列表或画树状图的方法列举出所有点的情形; 分别求出点在两个反比例函数的图象上的概率,并说明谁的观点正确.
据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)
图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.求m的值;求点B的坐标;该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标.