如图:在△ABC中,AB=2,BC=2,AC=4,点O是AC的中点;回答下列问题:(1)∠BAC= °(2)画出将△ABC绕点O旋转180°得到的△A1DC1(A→A1 B→D C→C1),写出四边形ABCD的形状。(3)尺规作图:在图中作出△ABC的高线AE(保留作图痕迹),并回答在四边形ABCD的边上(点A除外)是否存在点F,使∠EAC=∠EFC; 若存在点F,写出这样的点F一共有几个?并直接写出DF的长。若不存在这样的点F,请简要说明理由。
“双十一”淘宝网销售一款工艺品,每件的成本是50元.销售期间发现:销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天的销售利润为y元. (1)求出y与x之间的函数表达式; (2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少? (3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要 元. (每天的总成本=每件的成本×每天的销售量)
如图,在Rt△ABC中,∠ACB=90°,AC=6,D为BC边上一点,CD=3,过A,C,D三点的⊙O与斜边AB交于点E,连结DE.(1)求证:△BDE ∽△BAC;(2)求△ACD外接圆的直径的长;(3)若AD平分∠CAB,求出BD的长.
如图,在Rt△ABC中,∠C=90°,∠A=30°.请把Rt△ABC分割成三个三角形,其中有两个三角形和原Rt△ABC相似,第三个三角形为等腰三角形.画图要求:(1)工具不限,画图准确,标出能说明画法的符号或角度.(2)用三种不同的方法画图,有一条分割线的位置不同即视为不同的画法.
如图,在等边△ABC中,点D在BC边上,点E在AC边上,且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若AB=9cm,BD=3cm,求EC的长.
在不透明的布袋里装有白、红、黄三种颜色的乒乓球(除颜色外其余都相同),其中白球有1个,红球有2个,黄球1个.(1)求从袋中摸出一个球恰好是黄球的概率;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是红球的概率.