已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
用水平线和竖直线将平面分成若干个边长为 1 的小正方形格子,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为 S ,它各边上格点的个数和为 x .
(1)图①-④中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出 S 与 x 之间的关系式.
答 S = _____.
(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有 2 个格点.此时所画的各个多边形的面积 S 与它各边上格点的个数和 x 之间的关系是: S = _____.
(3)请你继续探索,当格点多边形内部有且只有 n 个格点时,猜想 S 与 x 有怎样的关系?
如图,三角形 ABC 内的线段 BD , CE 相交于点 O ,已知 OB = OD , OC = 2 OE .设 △ BOE , △ BOC , △ COD 和四边形 AEOD 的面积分别为 S 1 , S 2 , S 3 , S 4 .
(1)求 S 1 : S 3 的值;
(2)如果 S 2 = 2 ,求 S 4 的值.
如图,在平面直角坐标系中,有 A 0 , 5 , B 5 , 0 , C 0 , 3 , D 3 , 0 且 AD 与 BC 相交于点 E ,求 △ ABE 的面积.
如图,四边形 ABCD 被 AC 与 BD 分成甲、乙、丙、丁 4 个三角形,已知 BE = 80 cm , CE = 60 cm , DE = 40 cm , AE = 30 cm ,问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?
如图, △ ABC 的边 AB = 30 cm , AC = 25 cm ,点 D , F 在 AC 上,点 E , G 在 AB 上, S △ ADE : S △ DEF : S △ EFG : S △ FGC : S △ CBC = 1 : 2 : 3 : 4 : 5 ,求 AD 和 GE 的长.